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Abstract
The bulk modulus of solid fcc C60 was calculated with a density functional tight binding
method, augmented by an empirical van der Waals force. The predicted modulus of 9.1 GPa is
in good agreement with the experimental measurements. We found that the geometric structures
of C60 molecules in the solid fcc phase are considerably changed under strong compression, due
to variations in the type of hybridization of carbon atoms. We also observed a reduction of the
HOMO–LUMO gap under compression which is attributed to the overlap of π orbitals from
neighboring C60 molecules. Finally, we showed that the dispersion energy correction in the
adopted scheme plays an essential role for the quantitative description of the weakly bound C60

solid.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the identification of the C60 molecule [1] and the
subsequent discovery of effective synthesis of the C60

solid [2, 3], C60 has attracted much research interest due to
its potential application in electronic and optical nanodevices,
as well as in nanoelectromechanical systems. Because of
their nanoscale size, the mechanical strength of a nanodevice
component, which may be naturally under external stress due
to connection and interaction with other components of a
device, is a critical parameter that determines the stability of
nanodevices. Also, the electronic and thus optical properties
of the nanoscale component under applied pressure may be
modified, and thus alter the device performance or cause
deterioration. Therefore, the exploration of the mechanical
stability of solid C60 under external stress is needed before it
can be successfully used in nanodevice design and fabrication.

In particular, as a measure of the material’s stiffness, the
compressibility or bulk modulus of solid C60 has been
extensively investigated, using x-ray and neutron diffraction
methods and a variety of pressure-transmitting media [4–12].
Based on the available experimental data, however, the results
from different groups often differ by significant amounts. The
controversy may be attributable to non-hydrostaticity of the
pressure generated, the different methods of pressurization and
measurements, as well as amorphization, polymerization or
phase transition of the sample [12].

Due to the obvious difficulties in the experimental mea-
surements of mechanical properties, theoretical exploration
should be performed to establish a reference platform on which
future studies, both experimental and theoretical, could be per-
formed. The compression properties of solid C60 have been
investigated theoretically, mainly using simple empirical inter-
molecular potentials with Lennard-Jones or exponential atom–
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atom interactions [4, 13–20]. These calculations were per-
formed primarily to test models for the potentials, and also
gave a large variation of the predicted bulk modulus. Further-
more, these molecular mechanics methods cannot be consid-
ered as successful in the sense that the empirical intermolec-
ular functions may not be applicable or transferable for C60’s
derivatives and other complexes. Therefore, theoretical inves-
tigations with a higher level of theory are required, which can
address the challenges of parametrization and achieve general
transferability with a high accuracy.

The intermolecular interactions among C60 molecules
in the solid phase arise primarily from the weak van der
Waals (vdW) type forces, and the long-range dispersion
interactions should be the major source of attraction between
neighboring C60 molecules. Therefore, to obtain quantitative
information about weakly bound solid C60, the effect of weak
intermolecular interactions should be taken into account in
the adopted theoretical methods. The most widely used
method for this purpose is the second-order Møller–Plesset
(MP2) perturbation theory; its application is, however, limited
to small systems due to its huge computational demands.
Although density functional theory (DFT) often gives accurate
solutions for larger clusters or periodic structures, the generally
used DFT methods fail to describe the dispersion interaction
that contributes significantly to the binding energy. To
overcome this drawback, a common practice is to introduce
an empirical correction to calculate the additional attraction
energy [21–23]. The recently developed self-consistent-
charge density functional tight binding (SCC-DFTB) method,
augmented by the empirical London dispersion correction
(acronym SCC-DFTB-D), follows this approach [24]. In this
study, we employed the SCC-DFTB-D method to calculate the
bulk modulus of solid fcc C60, and compared it with previous
experimental measurements and existing calculations. We also
investigated the change in the geometry of C60 molecules
caused by external pressure, as well as the variation of the
energy gap with the compression.

2. Computational method and models

The SCC-DFTB approach is an approximate DFT scheme,
which is derived from a second-order expansion of the Kohn–
Sham total energy in DFT with respect to charge density
fluctuations. The Hamiltonian matrix elements are calculated
with a two-center approximation, which are tabulated together
with the overlap matrix elements as a function of the
interatomic distance. A comprehensive description of this
method can be found in the literature [21, 25]. SCC-DFTB
has been proven to be computationally efficient and extremely
reliable in the simulation of large systems with hundreds of
atoms or periodic materials.

In order to describe the weak interaction between two
separated fragments, an empirical dispersion term is added to
the SCC-DFTB total energy for large distances, and a damping
of this term with the onset of overlap of the charge density is
included. The vdW interaction energy is defined as

Evdw = −
∑

αβ

f (Rαβ)Cαβ

6 (Rαβ)−6 (1)

where f (R) is the damping function as defined in [24],

f (R) = [1 − exp(−d∗(R/R0)
N )]M (2)

with the values d = 3.0, N = 7 and M = 4 for all types of
atoms. R0 is defined by the range of the overlap of two atoms,
and is taken as 4.8 Å for the second row elements. The C6

coefficient for a given atom α is calculated as

Cα
6 = 0.75

√
Nα p3

α (3)

where Nα is the Slater–Kirkwood effective number of electrons
and pα is the polarizability of atom α. Also

Cαβ

6 = 2Cα
6 Cβ

6 pα pβ

p2
αCα

6 + p2
βCβ

6

. (4)

In this study, we use the same damping function f (R) and C6

coefficient as used in [24]. The resulting scheme was found
to be appropriate for predicting the geometrical structure and
binding energy of weakly interacting systems [24, 26, 27].

At room temperature and atmospheric pressure, crystalline
C60 forms a face-centered-cubic (fcc) phase, in which the C60

molecules rotate almost freely and thus are orientationally
disordered [28–31]. Many x-ray and neutron diffraction
studies of this phase showed that the molecular rotation
is not completely free, but that there is an intermolecular
orientational correlation [32–36]. For the purpose of
computing its compressibility, however, the C60 molecule can
be thought of as freely rotating with a negligible orientational
correlation. Consequently, in the model of solid fcc C60 in
this study, all C60 molecules are oriented with six of their 6–
6 double bonds parallel to the supercell vectors, so that their
mirror planes are all aligned with the cell faces, as shown in
figures 1(a)–(c). In this case, each C60 molecule is oriented
such that the centers of eight of its twenty hexagons are
aligned along the cubic 〈111〉 directions, corresponding to the
‘standard orientation’, which is described in detail in [37].
Therefore, all C60 molecules have a unique orientation with
respect to their neighboring molecules, i.e. one pentagon of a
molecule faces another pentagon of its neighbor with a parallel
displacement, as depicted in figure 1(d).

3. Results and discussion

The bulk modulus B of a given material can be calculated from

B = Vo
∂2 E

∂V 2
, (5)

where E is the total energy, V is the unit cell volume, and
∂2 E/∂V 2 is the second derivative of E with respect to V .
Therefore, the variation of the total energy with the unit cell
volume, E(V ), is required. To this end, we first performed
the geometry optimization of an internal C60 molecule, which
comprises the unit cell of solid fcc C60, for a given lattice
constant d , and thus obtained an optimized geometry of the
C60 molecule related to the given d and a resulting total energy
E(d). Next, we repeated the following procedure: varying d
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(a)

(d)

(b) (c) 

Figure 1. (a) The fcc structure of C60 in a supercell, and the view along the (b) [001] and (c) [111] direction, respectively. (d) The relative
orientation of two neighboring C60 molecules with two face-to-face contact pentagons colored in blue.

by small elongations δd , starting the optimization calculations,
obtaining the corresponding total energies as local minima,
and determining the global minimum E0 = mind E(d). As
a result, we obtained the profile of the function E(d) around
the global minimum and the minimal total energy E0 =
E(d0) at the optimal lattice constant d0 for the most stable
structure, as shown in figure 2. Our calculations predict that
the optimal lattice constant d0 is 9.9 Å, in good agreement
with the measured closest center-to-center C60–C60 contact
distance of 10.0 Å [37], given that the difference of 0.1 Å is
of the same order as that at ab initio level. Now the total
energy curve as a function of the unit cell volume, E(V ),
can be plotted (see the inset in figure 2), according to the
function E(d) and the relation between the fcc unit cell volume
and its lattice constant, V = (

√
2/2)d3. Eventually, the

bulk modulus B was calculated to be 9.1 GPa according to
equation (4), only about 4.9% lower than the experimental
value of 9.6 GPa [36], which was considered as the best
estimate of the bulk modulus of solid fcc C60 in the low-
pressure range, and as the reference standard for theoretical
calculations [4]. Our value is much superior compared to the
previous theoretical results which used the rather high value of
18.1 GPa [5] as a reference standard [4]. In addition, the SCC-
DFTB-D predicted bulk modulus of solid fcc C60 indicates
that the intermolecular interaction between C60 molecules is
comparable to the interlayer interaction in graphite, since the
c-axis compressibility of graphite is −2.8 × 10−2 GPa−1 [38],
and thus its bulk modulus is close to 33.8 GPa.

In the C60 molecule, each carbon atom is sp2 hybridized
and bonded to three nearest neighboring carbon atoms with

3
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Figure 2. Binding energy versus lattice constant. The inset is the
total energy curve as a function of the unit cell volume near the
global minimum.

σ bonds. The remaining valence electron forms a double
bond, known as π bond, which is delocalized. However, the
C60 molecule tends to avoid forming double bonds within the
pentagonal rings, which makes electron delocalization poor,
i.e. the electrons in the hexagonal rings do not completely
delocalize throughout the whole cage, resulting in the fact that
pentagons are much less aromatic than hexagons. Accordingly,
there are two kinds of bonds in the C60 molecule, i.e. those
between atoms located between pairs of hexagons (short bonds,
SB) and those between a hexagon and a pentagon (long bonds,
LB). Our calculations predict that the lengths of SBs and LBs
at the various locations of C60 molecules in the most stable
structure of the fcc phase are in the ranges of 1.406–1.408 Å
and 1.450–1.456 Å, respectively, both of which are consistent
with the corresponding values of 1.407 Å and 1.453 Å in the
isolated C60 molecule. It can be seen that the lengths of SBs
are quite similar to that of the C–C bond within the benzene
molecule (1.40 Å), while the lengths of LBs are intermediate
between those of the benzene C–C bond and the common
C–C single bond. In addition, each carbon atom is bonded
to three adjacent carbon atoms, and thus is involved in three
bond angles: one is the interior angle of the pentagon (α) and
the other two are the interior angles of the hexagon (β). In
the most stable structure of solid fcc C60, the predicted bond
angle α is about 107.9◦, and β ranges from 119.9◦ to 120.1◦,
respectively: those values are close to the corresponding values
of 108.0◦ and 120.0◦ in an isolated C60 cage. Furthermore,
the diameter of the C60 molecule (i.e. the maximum distance
between two C nuclei in one cage) in the optimal fcc structure
was calculated to be 6.842 Å, only 0.029 Å smaller than that
of an isolated C60 molecule. Therefore, we find that the C60

molecules shrink slightly when condensed into the solid state
under zero pressure.

Under strong compression induced by external pressure,
however, the geometries of C60 molecules will change con-
siderably, despite the enormous strength of the intramolecu-
lar bonds. As shown in figure 3, our calculations reveal that

Figure 3. ‘Wrinkling’ of C60 molecules in a fcc lattice under strong
compression. Pairs of neighboring C60 molecules are viewed from
three directions, perpendicular to the a, b and c unit cell vectors in
the top, middle and lower panels, respectively. The two face-to-face
contact pentagons are colored in blue to highlight the relative
orientation of two neighboring C60 molecule.

the geometries of C60 molecules are severely ‘wrinkled’ when
the lattice constant is compressed to 8.8 Å, considerably re-
duced from that at zero pressure. It also can be seen from fig-
ure 3 that, although the compression is isotropic, the change in
the geometry of the C60 cage is anisotropic along three direc-
tions of the lattice vectors, due to the anisotropic intermolecu-
lar interactions. In this case, the distances between two closest
carbon atoms from adjacent C60 molecules decrease to 1.39–
1.71 Å, indicating the overlap between π -orbitals from neigh-
boring C60 molecules or the possible formation of strong inter-
actions between neighboring C60 molecules (see below). The
lengths of LBs range from 1.406 to 1.497 Å, while those of SBs
range from 1.373 to 1.456 Å, both about 3% different from the
values in the most stable structure at zero pressure. It can be
seen that the lengths of some bonds are changed to be similar
to that of the C–C single bond and the lengths of other bonds
tend to be similar to that of the C–C double bond (1.34 Å). On
the other hand, the angles α are altered to 100.8◦–115.2◦ and
the angles β are altered to 103.2◦–128.7◦, many of which fall
in the range from 107◦ to 111◦ that is close to the bond angle
in the sp3 hybridized orbitals. Therefore, the variations in the
bond lengths and bond angles can be elucidated as follows: in
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Figure 4. Variation of energies of HOMO and LUMO with the
lattice constant of fcc C60.

the C60 molecule the sp2-hybridized carbon atoms, which are
at their energy minimum in planar graphite, must be bent to
form the closed sphere, thus producing angular strain. Under
compression induced by the external stress, however, the an-
gular strain can be reduced by changing partial sp2-hybridized
carbons into sp3-hybridized ones, with the redundant orbital
overlapped by another from a neighboring C60 molecule. The
change in hybridized orbitals causes the bond angles to be al-
tered to about 109.5◦ in sp3 orbitals, which allows the bonds
to bend less when closing the sphere. Accordingly, the corre-
sponding bond lengths are changed to be consistent with those
of common C–C single and double bonds, and the π -bonds be-

come more localized, causing the deterioration of aromaticity
within the hexagonal rings. Consequently, it can be concluded
that the variations in the intramolecular bond lengths and bond
angles arise from the changes in the hybridized type of par-
tial carbon atoms and thus in the type of C–C bonding, which
results in the distortion of C60 molecules.

As was discussed above, the compression under external
pressure gives rise to a decrease in intermolecular distance
and thus an increase in intermolecular interactions between
adjacent C60 molecules in the solid phase, which further
influences their other properties, for example their electronic
properties. It can be seen from figure 4 that the energy
of the highest occupied molecular orbital (HOMO) gradually
increases when the lattice constant is compressed from about
11.3–8.9 Å, while the energy of the lowest unoccupied
molecular orbital (LUMO) slightly decreases. Therefore, the
HOMO–LUMO gap decreases drastically from 1.80 to 0.17 eV
with the decrease in the intermolecular distance induced by
the compression that follows application of pressure. The
reduction of the energy gap may arise from the increase in
overlap between π orbitals from neighboring C60 molecules
because of the decrease in the contact distance between
two cages. It can be observed from figure 5 that, when
the lattice constant is compressed to 8.9 Å, the overlap
between intermolecular π orbitals is much more extensive
in comparison with that of the stable structure at zero
pressure. On the other hand, when the solid suffers such
severe compression, with the closest intermolecular C–C
distance of only about 1.49 Å, covalent bonds may be formed
between neighboring C60 molecules, which will enhance
the delocalization of valence electrons and thus reduce the
HOMO–LUMO gap. When the lattice constant is compressed

(b) 

(d) 

(a) 

(c) 

Figure 5. Isosurfaces of the wave functions of the HOMOs (left panels) and LUMOs (right panels) derived from bands at the � point for the
most stable fcc structures of C60 in a supercell at zero pressure (d = 9.9 Å, upper) and under severe compression (d = 8.9 Å, lower),
respectively. The iso-value is ±0.02 au. The red and blue colors denote the positive and negative signs, respectively.
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below 8.8 Å, however, the energies of HOMO and LUMO
change quite dramatically, indicating that solid C60 may
acquire special distinctive electronic properties under severe
external pressure, thus offering the opportunity to tune the
material properties by compression.

Finally, to elucidate the crucial effect of weak intermolec-
ular interactions between neighboring C60 molecules on stabi-
lizing the C60 solid, and the need for the method to be aug-
mented with a dispersion correction in the description of vdW
complexes, we compared our results with calculations that
omitted the long-range vdW interactions, including the opti-
mization of geometric structures of fcc C60 unit cell and the
calculation of its structural and mechanical properties using
the normal SCC-DFTB scheme without dispersion correction.
Being augmented with an empirical term for long distances,
the SCC-DFTB-D method predicts that the binding energy of
solid fcc C60 is as large as −2.14 eV per buckyball, as shown
in figure 2. In contrast, the SCC-DFTB method does not ac-
count for the long-range part of the dispersion interaction, and
thus largely underestimates the vdW interaction among C60

molecules. It predicts a rather small binding energy of only
−0.05 eV, indicating that the C60 solid state will not quite be
stable without dispersion forces, which are thus crucial for the
stability of the C60 solid. According to equation (5), to cal-
culate the bulk modulus of solid C60, the second derivative
∂2 E/∂V 2 is required, i.e. the theoretical method should pro-
vide accurate dependence of total energy E on unit cell volume
V or lattice constant d . The SCC-DFTB total energy curve is
much flatter than that of SCC-DFTB-D (not shown here) in
the intermediate distance region in the vicinity of the poten-
tial minimum, again due to the missing dispersion correction
in the SCC-DFTB total energy. Therefore, the small curvature
yields an unreasonably small bulk modulus of only 1.5 GPa,
which is much smaller than the previous experimental mea-
surements and the SCC-DFTB-D result, showing that accurate
evaluation of the dispersion energy is essential for the quantita-
tive description of the compressibility of vdW complexes. On
the other hand, the bulk modulus of a substance is defined as
the ratio of the change in pressure to the volume compression.
Without dispersion interactions, the C60 solid will become un-
stable as shown above, and be apt to compress under a given
amount of external pressure, which will thus result in an unre-
alistically smaller bulk modulus.

4. Conclusions

We calculated the geometric structures and energetics of the fcc
C60 crystal, using the density functional tight binding method,
augmented by an empirical dispersion correction. We predict
that the bulk modulus of solid fcc C60 is 9.1 GPa, which is
consistent with the experimental values and much superior to
the results from empirical molecular mechanics calculations. It
is revealed that the dispersion forces play a crucial role in the
interaction between adjacent C60 molecules in the solid state,
and that it is essential to take the dispersive energy correction
into account in the adopted scheme. When the crystal is
compressed by external pressure, i.e. the lattice parameter
is considerably contracted, the internal molecular structures

are expected to be severely ‘wrinkled’, accompanied by large
changes in the intramolecular bond lengths and bond angles,
which are induced by modifications in the hybridization of
the carbon atoms. The compression will cause changes in the
electronic properties; e.g., the HOMO–LUMO gap decreases
from 1.80 to 0.17 eV as the lattice constant is compressed
from 11.3 to 8.9 Å, due mainly to the overlap of π orbitals
on neighboring C60 molecules and the formation of covalent
bonds between adjacent cages.
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